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A solution is found for the problem of gas flow through an opening in
one of the parallel walls of a channel in which gas is passing., The solu-
tion yields, as a limiting case, a solution to the problem of the efflux
of gas through a hole in the plane parallel to its direction of flow,

In his solution, the author makes use of a suggestion by Falkovich [1]
which allows extension of the Chaplygin gas flow solution [ 2] to stream
problems with several characteristic velocities. The problem dealt with
here contains three characteristic velocities.

1. Suppose AB and OF are channel walls, DE is an aperture in a wall,
DM and EN are free surfaces of the jet (Fig. 1) at which the velocity is
Vb. Let 2D be the channel width, 2d the width of the aperture, 2h is the
width at infinity of the jet flowing out, and vy and v, are gas velocities
at infinitely distant channel sections AC and BF respectively. We select
the center of the aperture DE as origin O, the zx2-axis as the line along
the channel wall in the main direction of
flow and the y-axis as the direction of the
jet or stream. Assume that on the streamline
SK, which branches at point K, the stream
function Y = 0. If we denote the gas dis-
charge in the stream as g and the discharge
through a section of the channel as Q, then
= q along CDM, and ¢y = ~ Q along the
streamline AB. Denote the angle between the
stream or jet at infinity and the x-axis as
=. The gas velocity everywhere is assumed
to be subsonic,

Fig. 1. Let us put r = vz/v,%ax where v is velo-
city and Ynax is the maximum flow velocity

and & is the angle of inclination of the velocity vector to the x-axis.
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Then in the hodograph plane € the flow region is represented by a semi-
circle (Fig., 2).

The boundary conditions are as follows:

|

mpE 6 =0, 0 <T1<me
Q mpE8=0, Tty
epE 8=0, Ty<t<T, {1.1)
opE O=1=x, 0 <1<
npE T=1, 0 <8 <m

f i

I

RS e S i =
I
S wom | O

opE T =1, m <0 <n (1.2

We look for a solution in the following form:

Pr= ) a2y, (Nsinnd (0 <T<T) (1.3)

n=1

hi=— Q=8 4 SA,Z, () + Bl (D sind  (m<t<m)  (14)

k2
n=1

Uo=gq “:9 4 N €2y () + Dyl (Nsinad  (m<T<T)  (1.5)

n=1 .

Here Zn/z(r) is an integral of the Chaplygin equation [2] reegular
for r = 0, whilst gn/z(r) is another integral of the same equation
linearly independent of anz [3,11. Essentially, the Wronskian of these
integrals will be

’ .

Zn/z [:'n/z

w (Zn/2’ C'mla) = z

’

1
—gt—f  (B=:=) (1.6)
nf2 Cﬂ/2

Here is the polytropic index. The stream function defined by equations
(1.3), {(1.4), (1.5) satisfies the boundary conditions (1.1). We will now
specify that boundary condition (1.2) be satisfied, and that ¢& be the
analytic continuation of ¢, from region 0 < r <7, into the region 7, <

r < 7o i.e. we require that the following equations hold

dolm) =g (0<8<m)

Pt =0 (O<o<m) (.7
i) a

do =y, %2% upE T=1
B By <o <n)y (1.8)

1= ¢, i opa ~ = T

If we insert the stream function {y determined from equations (1.3),
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(1.4), (1.8) into (1.7) and (1.8) and equate coefficients of sin n@ we
obtain the following system of equations

CrZpsy (7o) + Dy Ly (T0) = — (29 / mn) cos mn
(Con—Ap) 2,y (5) + (D — B Ly (1) = — 2 (g + Q) [ mn
(Crn—A) Zyyp (1) -+ (D — B ) Gy (71) = 0
(A —ap) Zyy (72) + Byl (12) = 2Q [ mn (1.9)

(Ay—ap) Zr 5 (T) + By Ly (T8) = 0

We solve the system (1.9), and making use of relations (1.6), we de-

termine coefficients a,, An, Bn, Cn, Dn.

The stream function ¥ is determined likewise. In what follows we will
only need to know the function ¢y in the region Ty <r < Ty lee. ¢b' which
will simply be referred to as ¢y, On inserting coefficients C". D, into
(1.5) we find

z_;P:";e_ 3 %fn(‘r)sinnﬂ (1.10)
where e
Z,, (1) { 271 Z;M(TO
— n/2 _ _ 1.41
o () =cosmn Zoy () A4k Ao Zopa ) (1.11)

2 Zap()
A—m)fn Z,, (%)

} (2 (o) Znjg (%) — Zpjg (To) Ty (7)) (k = %)

It is easy to see that

fn{To) = cosmn (1.12)
. Z;n/z (7o) Ta <1 — 1, \P Z;tlz (T2) T (1 — T 8 Z;l/? (71)
fn' (7o) = cosmn Zpy (o) ko \T— n) Zpp (T0) AR \r= Tl) Zyy3 (o)

The last equation will be obtained if we differentiate (1.11) and make
use of (1,6).

2. We now introduce a new coordinate system z°, y’. For the z’-axis
we take the straight line to which both free surfaces of the jet tend
(Fig. 1). This straight line intersects the x-axis at 0", coordinates
x=a, y= 0. Point 0° will be taken as the origin of the new system of
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coordinates. In the new system we will have

oy 1 9 9
b G-I L] @

Here 6 = 6 — m, Integrating (2.1) we find

. 1 [ 9
i—qy':.m{—?rn‘l._jn )§smn(6 + m)sin §’d6’ —
1\-‘ feve) 6/
1Y N ' 0
__2_§cosed6 — %, fn(1)§cosn(6 +m)cosed6} (2.2)

Assuming that § = — m and 7 = ™o in (2.2), we obtain the coordinate
y" = (d + a) sin m, at point D, Assuming 8’ =7 — mand 7 = 7, Wwe obtain
the coordinate y° = (a — d) sin m at point E. If we subtract the second
relation obtained in this manner from the first, we get

n—m co n—m
= d 1 . g § {
5 psiom=3 S cos 0’ d§’ -+ 2’ T (%0) 5 cosn (8’ 4 m)cos 8’ d6’ -+
-_m n==] -
w—m
+ }] L N RSS! S sin n (64 m) sin 6° 46’ (2.3)
n=1 ~m

Here, it was borne in mind that

g = 2hvy (1 — 1, (2.4)

On performing quadrature and taking into account (1,10) we arrive at

n d X cos2mn %o‘ in 7 Z, (1)
5 =rctgm+41—2 Z—M — 2 4n2__—1"—{[0032mn_——zn\10)
n=1 n=1
:fl 1—70>ﬁ Z‘n’ (12) T /1 — Ty B Z (11)
+k1'0 (1—-12 Z'n (7o) —(14+k T, \1 —Tl> Zn (%o) ] (25)

Notice now that only functions Zn of integral index remain, because,
with functions of the form Z(2k+-1)/2 the coefficients vanish.

On introducing Chaplygin functions

nZ(T)

WO =Tz,

and bearing in mind that

cos 2mn nsinm
2 Z n—1 =1——3
n=1
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we obtain from (2.5)

T d T
-2—7l—=1:ctgm+~2-sinm—— (2.6)
[ee]
4n (1—r B Z, ()
- ZM{COSZmnx (.0)+k\1 0) Z, (7o) &, (72) —
N “1")3 S }
—+0r==,) Z.y %™
To this expression we should add the equation of continuity
Doy (1 —11)P = Doy (1 — ) 4 b (1 — 7o) @7
Besides
v (1—72)" D
= e {2.8)

k=Qlg= vo(i—‘r‘,)ah

One more equation is obtained from the theorem of momentum conserva~-

tion:
2D (py — pe) == gvg cos m -} Qup — 2Dvy (1 — rl)ﬁ " (2.9)

Here p, and p., are the pressures at the entry and exit of the channel.

Taking account of the fact that
2

v
p=po (1 —)fH, Po=2—(BLn%)— (o= 1)

we find from (2.9)
14+ (2B+ 1) (i —n)ﬁ

cosmmm 1_1‘%‘(23'{"“?1 1 (2.40;
23+ VT (2 2”*'1—12)6
_<11) (1—11

From expressions (2.6), (2.7), (2,10) h, nm, v, are determined as func~
tions of v,, v, D and d. From (2.4) we find the discharge ¢ through the

hole.

3. If the channel is infinitely wide, v, = v, From (2.10) and (2.6)

we find
ok

COSIT&:(';;‘) = 3.1}

%%mnctgm+_sxnm~— 2 4" 1cosmet:n(T,,)——

n==1

{— 1 4n (1) s nt  Z, (1)

_<’1—'r)> D_y 12, (10)‘” n (1) 2142—-1z (‘ru)] 3.2
n=1

=1
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Putting vy = 0 in (3.1) and (3.2), we arrive at the case, where gas
flows from an infinite vessel and obtain the Chaplygin formula {21

md__m 4 (_1)""—14)1.
TE -3 T Y e (™) (3.3)

On replacing r by vz/vzmax and going over to the limit where Ynax ” ®
in (2.6), (2.7), (2.10), we obtain the formulas representing the flow of
incompressible fluid from a channel. It is easy to sum the series in

this case and the result can be expressed in terms of elementary functions.
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